

Орлов А.И. Математика случая: Вероятность и статистика – основные факты: Уровень значимости и мощность5. Основные проблемы прикладной статистики - описание данных, оценивание и проверка гипотез Уровень значимости и мощность При проверке статистической гипотезы возможны ошибки. Есть два рода ошибок. Ошибка первого рода заключается в том, что отвергают нулевую гипотезу, в то время как в действительности эта гипотеза верна. Ошибка второго рода состоит в том, что принимают нулевую гипотезу, в то время как в действительности эта гипотеза неверна. Вероятность ошибки первого рода называется уровнем значимости и обозначается α. Таким образом, α = P{U Уровень значимости однозначно определен, если Н0 – простая гипотеза. Если же Н0 – сложная гипотеза, то уровень значимости, вообще говоря, зависит от функции распределения результатов наблюдений, удовлетворяющей Н0. Статистику критерия U обычно строят так, чтобы вероятность события {U Если критическая область имеет вид, указанный в формуле (9), то P{U > C H0} = α. (10) Если С задано, то из последнего соотношения определяют α. Часто поступают по иному - задавая α (обычно α = 0,05, иногда α = 0,01 или α = 0,1, другие значения α используются гораздо реже), определяют С из уравнения (10), обозначая его Сα, и используют критическую область Ψ = {U > Cα} с заданным уровнем значимости α. Вероятность ошибки второго рода есть P{U Понятия уровня значимости и мощности критерия объединяются в понятии функции мощности критерия – функции, определяющей вероятность того, что нулевая гипотеза будет отвергнута. Функция мощности зависит от критической области Ψ и действительного распределения результатов наблюдений. В параметрической задаче проверки гипотез распределение результатов наблюдений задается параметром θ. В этом случае функция мощности обозначается М(Ψ,θ) и зависит от критической области Ψ и действительного значения исследуемого параметра θ. Если Н0: θ = θ0, Н1: θ = θ1, то М(Ψ,θ0) = α, М(Ψ,θ1) = 1 – β, где α – вероятность ошибки первого рода, β - вероятность ошибки второго рода. В статистическом приемочном контроле α – риск изготовителя, β – риск потребителя. При статистическом регулировании технологического процесса α – риск излишней наладки, β – риск незамеченной разладки. Функция мощности М(Ψ,θ) в случае одномерного параметра θ обычно достигает минимума, равного α, при θ = θ0, монотонно возрастает при удалении от θ0 и приближается к 1 при θ - θ0 → ∞. В ряде вероятностно-статистических методов принятия решений используется оперативная характеристика L(Ψ,θ) - вероятность принятия нулевой гипотезы в зависимости от критической области Ψ и действительного значения исследуемого параметра θ. Ясно, что L(Ψ,θ) = 1 - М(Ψ,θ). |