Главная страница --> Экономические научные работы (книги)

Прикладная статистика: Стати .. | Гольдштейн Г.Я. Инновационны .. | Орлов А.И. Математика случая .. | Гольдштейн Г.Я. Стратегическ .. | Орлов А.И. Математика случая .. |


Нечисловая статистика: Статистика интервальных данных в прикладной статистике

Глава 4. Статистика интервальных данных

4.8. Статистика интервальных данных в прикладной статистике

Кратко рассмотрим положение статистики интервальных данных (СИД) среди других методов описания неопределенностей и анализа данных.

Нечеткость и СИД. С формальной точки зрения описание нечеткости интервалом – это частный случай описания ее нечетким множеством. В СИД функция принадлежности нечеткого множества имеет специфический вид – она равна 1 в некотором интервале и 0 вне его. Такая функция принадлежности описывается всего двумя параметрами (границами интервала). Эта простота описания делает математический аппарат СИД гораздо более прозрачным, чем аппарат теории нечеткости в общем случае. Это, в свою очередь, позволяет продвинуться дальше, чем при использовании функций принадлежности произвольного вида.

Интервальная математика и СИД. Можно было бы сказать, что СИД – часть интервальной математики, что СИД так соотносится с прикладной математической статистикой, как интервальная математика – с математикой в целом. Однако исторически сложилось так, что интервальная математика занимается прежде всего вычислительным погрешностями. С точки зрения интервальной математики две известные формулы для выборочной дисперсии, рассмотренные выше, имеют разные погрешности. А с точки зрения СИД эти две формулы задают одну и ту же функцию, и поэтому им соответствуют совпадающие нотны и рациональные объемы выборок. Интервальная математика прослеживает процесс вычислений, СИД этим не занимается. Необходимо отметить, что типовые постановки СИД могут быть перенесены в другие области математики, и, наоборот, вычислительные алгоритмы прикладной математической статистики и СИД заслуживают изучения. Однако и то, и другое – скорее дело будущего. Из уже сделанного отметим применение методов СИД при анализе такой характеристики финансовых потоков, как NPV – чистая текущая стоимость (см. выше).

Математическая статистика и СИД. Как уже отмечалось, математическая статистика и СИД отличаются тем, в каком порядке делаются предельные переходы  и  При этом СИД переходит в математическую статистику при . Правда, тогда исчезают основные особенности СИД: нотна становится равной 0, а рациональный объем выборки – бесконечности. Рассмотренные выше методы СИД разработаны в предположении, что погрешности малы (но не исчезают), а объем выборки велик. СИД расширяет классическую математическую статистику тем, что в исходных статистических данных каждое число заменяет интервалом. С другой стороны, можно считать СИД новым этапом развития математической статистики.

Статистика объектов нечисловой природы и СИД. Статистика объектов нечисловой природы (СОНП) расширяет область применения классической математической статистики путем включения в нее новых видов статистических данных. Естественно, при этом появляются новые виды алгоритмов анализа статистических данных и новый математический аппарат (в частности, происходит переход от методов суммирования к методам оптимизации). С точки зрения СОНП частному виду новых статистических данных – интервальным данным – соответствует СИД. Напомним, что одно из двух основных понятий СИД – нотна – определяется как решение оптимизационной задачи. Однако СИД, изучая классические методы прикладной статистики применительно к интервальным данным, по математическому аппарату ближе к классике, чем другие части СОНП, например, статистика бинарных отношений.

Робастные методы статистики и СИД. Если понимать робастность согласно [3] как теорию устойчивости статистических методов по отношению к допустимым отклонениям исходных данных и предпосылок модели, то в СИД рассматривается одна из естественных постановок робастности. Однако в массовом сознании специалистов термин «робастность» закрепился за моделью засорения выборки большими выбросами (модель Тьюки-Хубера), хотя эта модель не имеет большого практического значения [27]. К этой модели СИД не имеет отношения.

Теория устойчивости и СИД. Общей схеме устойчивости [3] математических моделей социально-экономических явлений и процессов по отношению к допустимым отклонениям исходных данных и предпосылок моделей СИД полностью соответствует. Он посвящен математико-статистическим моделям, используемым при анализе статистических данных, а допустимые отклонения – это интервалы, заданные ограничениями на погрешности. СИД можно рассматривать как пример теории, в которой учет устойчивости позволил сделать нетривиальные выводы. Отметим, что с точки зрения общей схемы устойчивости [3] устойчивость по Ляпунову в теории дифференциальных уравнений – весьма частный случай, в котором из-за его конкретности удалось весьма далеко продвинуться.

Минимаксные методы, типовые отклонения и СИД. Постановки СИД относятся к минимаксным. За основу берется максимально возможное отклонение. Это – «подход пессимиста», используемый, например, в теории антагонистических игр. Использование минимаксного подхода позволяет подозревать СИД в завышении роли погрешностей измерения. Однако примеры изучения вероятностно-статистических моделей погрешностей, проведенные, в частности, при разработке методов оценивания параметров гамма-распределения [4], показали, что это подозрение не подтверждается. Влияние погрешностей измерений по порядку такое же, только вместо максимально возможного отклонения (нотны) приходится рассматривать математическое ожидание соответствующего отклонения (см. выше). Подчеркнем, что применение в СИД вероятностно-статистических моделей погрешностей не менее перспективно, чем минимаксных.

Подход научной школы А.П. Вощинина и СИД. Если в математической статистике неопределенность только статистическая, то в научной школе А.П. Вощинина - только интервальная. Можно сказать, что СИД лежит между классической прикладной математической статистикой и областью исследований научной школы А.П. Вощинина. Другое отличие состоит в том, что в этой школе разрабатывают новые методы анализа интервальных данных, а в СИД в настоящее время изучается устойчивость классических статистических методов по отношению к малым погрешностям. Подход СИД оправдывается распространенностью этих методов, однако в дальнейшем следует переходить к разработке новых методов, специально предназначенных для анализа интервальных данных.

Анализ чувствительности и СИД. При анализе чувствительности, как и в СИД, рассчитывают производные по используемым переменным, или непосредственно находят изменения при отклонении переменной на +10% от базового значения. Однако этот анализ делают по каждой переменной отдельно. В СИД все переменные рассматриваются совместно, и находится максимально возможное отклонение (нотна). При малых погрешностях удается на основе главного члена разложения функции в многомерный ряд Тейлора получить удобную формулу для нотны. Можно сказать, что СИД – это многомерный анализ чувствительности.

По нашему мнению, во все виды статистического программного обеспечения должны быть включены алгоритмы интервальной статистики, "параллельные" обычно используемым в настоящее время алгоритмам прикладной математической статистики. Это позволит в явном виде учесть наличие погрешностей у результатов наблюдений (измерений, испытаний, анализов, опытов).



Похожие по содержанию материалы:
Орлов А.И. Экспертные оценки: Современная теория измерений и экспертные оценки ..
Орлов А.И. Основы теории принятия решений: Линейное программирование ..
Рыбальченко И. Практические методы разработки и анализа товарной стратегии предприятия на основе вну ..
Квалификационный справочник: Начальник лаборатории (бюро) технико-экономических исследований ..
Прикладная статистика: Статистика интервальных данных: Литература ..
Гольдштейн Г.Я. Инновационный менеджмент: Отбор и оценка проектов НИОКР ..
Орлов А.И. Математика случая: Вероятность и статистика – основные факты: ..
Гольдштейн Г.Я. Стратегические аспекты управления НИОКР: Жизненный цикл изделия и роль НИОКР в нем ..
Орлов А.И. Математика случая: Вероятность и статистика – основные факты: Доверительное оценивание дл ..
Маркетинг: Маркетинговые исследования: Цели, задачи и направления маркетинговых исследований ..
Гриненко С.В. Экономика недвижимости: Особенности землепользования ..
Менеджмент организации: Основы маркетинга: Разработка ценовой политики ..
Менеджмент организации: Основы маркетинга: Сущность, цели, основные принципы и функции маркетинга ..


Похожие документы из сходных разделов


Орлов А.И. Математика случая: Вероятность и статистика – основные факты: Стандартное нормальное распределение и центральная предельная теорема

4. Случайные величины и их распределения

Стандартное нормальное распределение и центральная предельная теорема

В вероятностно-статистических методах часто идет речь о нормальном распределении. Иногда его пытаются использовать для моделирования распределения исходных данных (эти попытки не всегда являются обоснованными – см. ниже). Более существен .. читать далее


Стратегии бизнеса: Стратегия реструктуризации: децентрализация управления и оптимальные размеры предприятия

ГЛАВА 4. КОМПЛЕКСНАЯ СОЦИАЛЬНО-ЭКОНОМИЧЕСКАЯ СТРАТЕГИЯ ПРЕДПРИЯТИЯ

4.9. Стратегия реструктуризации: децентрализация управления  и оптимальные размеры предприятия

В настоящее время многие предприятия находятся в стадии реорганизации. Изменяется структура управления, приобретают черты самостоятельности отдельные подразделения предприятия и т.д.

В данном пункте .. читать далее


Менеджмент организации: Инновационный менеджмент: Организационные структуры НИИ

IV. ИННОВАЦИОННЫЙ МЕНЕДЖМЕНТ

9. Организационные структуры НИИ

Организационная структура НИИ и место в ней служб главных конструкторов, научных руководителей.

Типы организационных структур управления инновационной деятельностью

Управление по дисциплинам наиболее широко применяется в инновационных фирмах, занятых в основном НИР, .. читать далее