Главная страница --> Экономические научные работы (книги)

Стратегии бизнеса: Стратегия .. | Маркетинг: Логистика: Разраб .. | Стратегии бизнеса: Стратегия .. | Маркетинг: Логистика: Управл .. | Нечисловая статистика: Стати .. |


Прикладная статистика: Компьютеры в прикладной статистике

Часть 4. Заключение. Современная прикладная статистика

4.3. Компьютеры в прикладной статистике

Методы статистических испытаний (Монте-Карло). Многие информационные технологии в области прикладной статистики опираются на использование методов статистических испытаний. Этот термин применяется для обозначения компьютерных технологий, в которых в модель реального явления или процесса искусственно вводится большое число случайных элементов. Обычно моделируется последовательность независимых одинаково распределенных случайных величин или же последовательность, построенная на ее основе, например, последовательность накапливающихся (кумулятивных) сумм.

Необходимость в методе статистических испытаний возникает потому, что чисто теоретические методы дают точное решение, как правило, лишь в исключительных случаях. Либо тогда, когда исходные случайные величины имеют вполне определенные функции распределения, например, нормальные, чего, как правило, не бывает. Либо когда объемы выборок очень велики (с практической точки зрения - бесконечны).  

Не только в задачах обработки данных возникает необходимость в методе статистических испытаний. Она не менее актуальна и при экономико-математическом моделировании технических, социально-экономических, медицинских и иных процессов. Представим себе всем знакомый объект - торговый зал самообслуживания по продаже продовольственных товаров. Сколько нужно работников в зале, сколько касс? Необходимо просчитать загрузку в разное время суток, в разные сезоны года, с учетом замены товаров и смены сотрудников. Нетрудно увидеть, что теоретическому анализу подобная система не поддается, а компьютерному - вполне.

Методы статистических испытаний стали развиваться после второй мировой войны с появлением компьютеров. Второе название - методы Монте-Карло - они получили по наиболее известному игорному дому, а точнее, по его рулетке, поскольку исходный материал для получения случайных чисел с произвольным распределением - это случайные натуральные числа.

В методах статистических испытаний можно выделить две составляющие. Базой являются датчики псевдослучайных чисел. Результатом работы таких датчиков являются последовательности чисел, которые обладают некоторыми свойствами последовательностей случайных величин (в смысле теории вероятностей). Надстройкой являются различные алгоритмы, использующие последовательности псевдослучайных чисел.

Что же это могут быть за алгоритмы? Приведем примеры. Пусть мы изучаем распределение некоторой статистики при заданном объеме выборки. Тогда естественно много раз (например, 100000 раз) смоделировать выборку заданного объема (т.е. набор независимых одинаково распределенных случайных величин) и рассчитать значение статистики. Затем по 100000 значениям статистики можно достаточно точно построить функцию распределения изучаемой статистики, оценить ее характеристики. Однако эта схема годится лишь для так называемой "свободной от распределения" статистики, распределение которой не зависит от распределения элементов выборки. Если же такая зависимость есть, то одной точкой моделирования не обойдешься, придется много раз моделировать выборку, беря различные распределения, меняя параметры. Чтобы общее время моделирования было приемлемым, возможно, придется сократить число моделирований в одной точке, зато увеличив общее число точек. Точность моделирования может быть оценена по общим правилам выборочных обследований.

Второй пример - частично описанное выше моделирование работы торгового зала самообслуживания по продаже продовольственных товаров. Здесь одна последовательность псевдослучайных чисел описывает интервалы между появлениями покупателей, вторая, третья и т.д. связаны с выбором ими первого, второго и т.д. товаров в зале (например, число - номер в перечне товаров). Короче, все действия покупателей, продавцов, работников предприятия разбиты на операции, каждая операция, в продолжительности или иной характеристике которой имеется случайность, моделируется с помощью соответствующей последовательности псевдослучайных чисел. Затем итоги работы сотрудников торговой организации и зала в целом выражаются через характеристики случайных величин. Формулируется критерий оптимальности, решается задача оптимизации и находятся оптимальные значения параметров. В частности, оптимальные планы статистического контроля строятся на основе вероятностно-статистических моделей [7].

Датчики псевдослучайных чисел. Теперь обсудим свойства датчиков псевдослучайных чисел. Здесь стоит слово "псевдослучайные", а не "случайные". Это весьма важно. Дело в том, что за последние 50 лет обсуждались в основном три принципиально разных варианта получения последовательностей чисел, которые в дальнейшем использовались в методах статистических испытаний.

Первый - таблица случайных чисел. К сожалению, объем любой таблицы конечен, и сколько-нибудь сложные расчеты с ее помощью невозможны. Через некоторое время приходится повторяться. Кроме того, обычно обнаруживались те или иные отклонения от случайности.

Второй - физические датчики случайных чисел. Основной недостаток - нестабильность, непредсказуемые отклонения от заданного распределения (обычно - равномерного).

Третий - расчетный. В простейшем случае каждый следующий член последовательности рассчитывается по предыдущему.  Например, так:

где z0 - начальное значение (заданное целое положительное число), M - параметр алгоритма (заданное целое положительное число), P=2m, где m - число двоичных разрядов представления чисел, с которыми манипулирует компьютер. Знак здесь означает теоретико-числовую операцию сравнения, т.е. взятие дробной части от  и отбрасывание целой части.

В настоящее время применяется именно третий вариант. Совершенно ясно, что он не соответствует интуитивному представлению о случайности. Например, интуитивно очевидно, что по предыдущему элементу случайной последовательности с независимыми элементами нельзя предсказать значение следующего элемента. А приведенная выше формула как раз и дает способ такого предсказания. Расчетный путь получения последовательности псевдослучайных чисел противоречит не только интуиции, но и подходу к определению случайности на основе теории алгоритмов, развитому акад. А.Н. Колмогоровым и его учениками в 1960-х годах. Однако во многих прикладных задачах он работает, и это основное.

Методу статистических испытаний посвящена обширная литература (см., например, монографии [31-33]). Время от времени обнаруживаются недостатки у популярных датчиков псевдослучайных чисел. Так, например, в середине 1980-х годов выяснилось, что для одного из наиболее известных датчиков три последовательных значения связаны линейной зависимостью

После этого в 1985 г. в журнале "Заводская лаборатория" началась дискуссия о качестве датчиков псевдослучайных чисел, которая продолжалась до 1993 г. и закончилась статьей проф. С.М.Ермакова [34] и нашим комментарием.

Итоги можно подвести так. Во многих случаях решаемая методом статистических испытаний задача сводится к оценке вероятности попадания в некоторую область в многомерном пространстве фиксированной размерности. Тогда из чисто математических соображений теории чисел следует, что с помощью датчиков псевдослучайных чисел поставленная задача решается корректно. Сводка соответствующих математических обоснований приведена, например, в работе С.М. Ермакова [34].

В других случаях приходится рассматривать вероятности попадания в области в пространствах переменной размерности. Типичным примером является ситуация, когда на каждом шагу проводится проверка, и по ее результатам либо остаемся в данном пространстве, либо переходим в пространство большей размерности. Например, в главе 3.2 при оценивании степени многочлена либо останавливались на данной степени, либо увеличивали степень, переходя в параметрическое пространство большей размерности. Так вот, вопрос об обоснованности применения метода статистических испытаний (а точнее, о свойствах датчиков псевдослучайных чисел) в случае пространств переменной размерности остается в настоящее время открытым. О важности этой проблемы говорил академик РАН Ю.В. Прохоров на Первом Всемирном Конгрессе Общества математической статистики и теории вероятностей им. Бернулли (Ташкент, 1986 г.).

Имитационное моделирование. Поскольку постоянно говорим о моделировании, приведем несколько общих формулировок.

Модель в общем смысле (обобщенная модель) - это создаваемый с целью получения и (или) хранения информации специфический объект (в форме мысленного образа, описания знаковыми средствами либо материальной системы), отражающей свойства, характеристики и связи объекта-оригинала  произвольной природы, существенные для задачи, решаемой субъектом (это определение взято из монографии [35, с.44]).

Например, в менеджменте производственных систем используют:

- модели технологических процессов (контроль и управление по технико-экономическим критериям, АСУ ТП - автоматизированные системы управления технологическими процессами);

- модели управления качеством продукции (в частности, модели оценки и контроля надежности);

- модели массового обслуживания (теории очередей);

- модели управления запасами (в современной терминологии - модели логистики, т.е. теории и практики управления материальными, финансовыми и информационными потоками);

- имитационные и эконометрические модели деятельности предприятия (как единого целого) и управления им (АСУ предприятием) и др.

Согласно академику РАН Н.Н. Моисееву [36, с.213], имитационная система - это совокупность моделей, имитирующих протекание изучаемого процесса, объединенная со специальной системой вспомогательных программ и информационной базой, позволяющих достаточно просто и оперативно реализовать вариантные расчеты. Другими словами, имитационная система - это совокупность имитационных моделей. А имитационная модель предназначена для ответов на вопросы типа: "Что будет, если…" Что будет, если параметры примут те или иные значения? Что будет с ценой на продукцию, если спрос будет падать, а число конкурентов расти? Что будет, если государство резко усилит вмешательство в экономику? Что будет, если остановку общественного транспорта перенесут на 100 м дальше от входа в торговый зал, о котором шла речь выше, и поток покупателей резко упадет? Кроме компьютерных моделей, на вопросы подобного типа часто отвечают эксперты при использовании метода сценариев [7, 8].

При имитационном моделировании часто используется метод статистических испытаний (Монте-Карло). Теорию и практику машинных имитационных экспериментов с моделями экономических систем еще 30 лет назад подробно разобрал Т. Нейлор в обширной классической монографии [37]. Вернемся к внутристатистическому применению датчиков псевдослучайных чисел.

Методы размножения выборок (бутстреп-методы). Прикладная статистика бурно развивается последние десятилетия. Серьезным (хотя, разумеется, не единственным и не главным) стимулом является стремительно растущая производительность вычислительных средств. Поэтому понятен острый интерес к статистическим методам, интенсивно использующим компьютеры. Одним из таких методов является так называемый "бутстреп", предложенный в 1977 г. Б.Эфроном из Станфордского университета (США).

Сам термин "бутстреп" - это английское слово "bootstrap", записанное русскими буквами. Оно буквально означает что-то вроде: "вытягивание себя (из болота) за шнурки от ботинок". Термин специально придуман и заставляет вспомнить о подвигах барона Мюнхгаузена.

В истории прикладной статистики было несколько более или менее успешно осуществленных рекламных кампаний. В каждой из них "раскручивался" тот или иной метод, который, как правило, отвечал нескольким условиям:

- по мнению его пропагандистов, полностью решал актуальную научную задачу;

- был понятен (при постановке задачи, при ее решении и при интерпретации результатов) широким массам потенциальных пользователей;

- использовал современные возможности вычислительной техники.

Пропагандисты метода, как правило, избегали беспристрастного сравнения его возможностей с возможностями иных эконометрических методов. Если сравнения и проводились, то с заведомо слабым "противником".

В нашей стране в условиях отсутствия систематического  образования в области прикладной статистики подобные рекламные кампании находили особо благоприятную почву, поскольку у большинства затронутых ими специалистов не было достаточных знаний в области методологии построения моделей прикладной статистики для того, чтобы составить самостоятельное квалифицированное мнение.

Речь идет о таких методах и постановках, как бутстреп, нейронные сети, метод группового учета аргументов, робастные оценки по Тьюки-Хуберу, асимптотика пропорционального роста числа параметров и объема данных и др. Бывают локальные всплески энтузиазма, например, московские социологи в 1980-х годах пропагандировали так называемый "детерминационный анализ" - простой эвристический метод анализа таблиц сопряженности. Хотя в Новосибирске в это время давно уже было разработано продвинутое математическое и программное обеспечение анализа векторов разнотипных признаков, включающее в себя «детерминационный анализ» как весьма частный случай.

Однако даже на фоне всех остальных рекламных кампаний судьба бутстрепа исключительна. Во-первых, признанный его автор Б. Эфрон с самого начала признавался, что он ничего принципиально нового не сделал. Его исходная статья (первая в сборнике [5]) называлась: "Бутстреп-методы: новый взгляд на методы складного ножа". Тем самым Б.Эфрон честно признавал первенство за М. Кенуем – автором методов «складного ножа». Во вторых, сразу появились статьи и дискуссии в научных изданиях, публикации рекламного характера, и даже в научно-популярных журналах. Бурные обсуждения на конференциях, спешный выпуск книг. В 1980-е годы финансовая подоплека всей этой активности, связанная с выбиванием грантов на научную деятельность, содержание учебных заведений и т.п. была мало понятна отечественным специалистам.

В чем основная идея группы методов "размножения выборок", наиболее известным представителем которых является бутстреп?

Пусть дана выборка . В вероятностно-статистической теории предполагаем, что это - набор независимых одинаково распределенных случайных величин. Пусть эконометрика интересует некоторая статистика  Как изучить ее свойства? Подобными проблемами мы занимались на протяжении всей книги и знаем, насколько это непросто. Идея, которую предложил в 1949 г. М. Кенуй (это и есть "метод складного ножа") состоит в том, чтобы из одной выборки сделать много, исключая из нее по одному наблюдению (и возвращая ранее исключенные). Перечислим выборки, которые получаются из исходной:

;

;

;

Всего n новых (размноженных) выборок объемом (n-1) каждая. По каждой из них можно рассчитать значение интересующей эконометрика статистики (с уменьшенным на 1 объемом выборки):

Полученные значения статистики позволяют судить о ее распределении и о характеристиках распределения - о математическом ожидании, медиане, квантилях, разбросе, среднем квадратическом отклонении. Значения статистики, построенные по размноженным подвыборкам, не являются независимыми. Однако, как мы видели в главе 3.2 на примере ряда статистик, возникающих в методе наименьших квадратов и в кластер-анализе (при обсуждении возможности объединения двух кластеров), при росте объема выборки влияние зависимости может ослабевать, а потому со значениями статистик типа можно обращаться как с независимыми случайными величинами.

Однако и без всякой вероятностно-статистической теории разброс величин дает наглядное представление о том, какую точность может дать рассматриваемая статистическая оценка.

Сам М. Кенуй и его последователи использовали размножение выборок в основном для построения оценок с уменьшенным смещением. А вот Б. Эфрон предложил новый способ размножения выборок, существенно использующий датчики псевдослучайных чисел. А именно, он предложил строить новые выборки, моделируя выборки из эмпирического распределения. Другими словами, Б. Эфрон предложил взять конечную совокупность из n элементов исходной выборки  и с помощью датчика псевдослучайных чисел сформировать из нее любое число размноженных выборок. Процедура, хотя и нереальна без ЭВМ, проста с точки зрения программирования. По сравнению с описанной выше процедурой Кенуя появляются новые недостатки - неизбежные совпадения элементов размноженных выборок и зависимость от качества датчиков псевдослучайных чисел. Однако существует математическая теория, позволяющая (при некоторых предположениях и безграничном росте объема выборки) обосновать процедуры бутстрепа (см. сборник статей [5]).

Есть много способов развития идеи размножения выборок (см., например, статью [38]). Можно по исходной выборке построить эмпирическую функцию распределения, а затем каким-либо образом от кусочно-постоянной функции перейти к непрерывной функции распределения, например, соединив точки  отрезками прямых. Другой вариант - перейти к непрерывному распределению, построив непараметрическую оценку плотности. После этого рекомендуется брать размноженные выборки из этого непрерывного распределения (являющегося состоятельной оценкой исходного), непрерывность защитит от совпадений элементов в этих выборках.

Другой вариант построения размноженных выборок - более прямой. Исходные данные не могут быть определены совершенно точно и однозначно. Поэтому предлагается к исходным данным добавлять малые независимые одинаково распределенные погрешности. При таком подходе соединяем вместе идеи устойчивости и бутстрепа. При внимательном анализе многие идеи прикладной статистики тесно друг с другом связаны (см. статью [38]).

В каких случаях целесообразно применять бутстреп, а в каких - другие методы прикладной статистики? В период рекламной кампании встречались, в том числе в научно-популярных журналах, утверждения о том, что и для оценивания математического ожидания полезен бутстреп. Как показано в статье [38], это совершенно не так. При росте числа испытаний методом Монте-Карло бутстреп-оценка приближается к классической оценке - среднему арифметическому результатов наблюдений. Другими словами, бутстреп-оценка отличается от классической оценки только шумом псевдослучайных чисел.

Аналогичной является ситуация и в ряде других случаев. Там, где эконометрическая теория хорошо развита, где найдены методы анализа данных, в том или иной смысле близкие к оптимальным, бутстрепу делать нечего. А вот в новых областях со сложными алгоритмами, свойства которых недостаточно ясны, он представляет собой ценный инструмент для изучения ситуации.

Компьютерная статистика в контроллинге. В качестве примера применения компьютерной статистики рассмотрим конкретную прикладную область – контроллинг, т.е. современный подход к управлению организацией [28]. Контроллеру и сотрудничающему с ним статистику нужна разнообразная экономическая и управленческая информация, не менее нужны удобные инструменты ее анализа. Следовательно, информационная поддержка контроллинга необходима для успешной работы контроллера. Без современных компьютерных инструментов анализа и управления, основанных на продвинутых эконометрических и экономико-математических методах и моделях, невозможно эффективно принимать управленческие решения. Недаром специалисты по контроллингу большое внимание уделяют проблемам создания, развития и применения компьютерных систем поддержки принятия решений. Высокие статистические технологии и эконометрика - неотъемлемые части любой современной системы поддержки принятия экономических и управленческих решений. 

Важная часть прикладной статистики - применение высоких статистических технологий к анализу конкретных экономических данных. Такие исследования зачастую требуют дополнительной теоретической работы по "доводке" статистических технологий применительно к конкретной ситуации. Большое значение для контроллинга имеют не только общие методы, но и конкретные эконометрические модели, например, вероятностно-статистические модели тех или иных процедур экспертных оценок или эконометрики качества, имитационные модели деятельности организации, прогнозирования в условиях риска. И конечно, такие конкретные применения, как расчет и прогнозирование индекса инфляции. Сейчас уже многим специалистам ясно, что годовой, квартальный или месячный бухгалтерский баланс предприятия может быть использован для оценки его финансово-хозяйственной деятельности только с привлечением данных об инфляции. Различные области экономической теории и практики в настоящее время еще далеко не согласованы. При оценке и сравнении инвестиционных проектов принято использовать такие характеристики, как чистая текущая стоимость, внутренняя норма доходности, основанные на введении в рассмотрение изменения стоимости денежной единицы во времени (это осуществляется с помощью дисконтирования). А вот при анализе финансово-хозяйственной деятельности организации на основе данных бухгалтерской отчетности изменение стоимости денежной единицы во времени по традиции не учитывают.

Специалисты по контроллингу должны быть вооружены современными средствами информационной поддержки, в том числе средствами на основе высоких статистических технологий и эконометрики. Очевидно, преподавание должно идти впереди практического применения. Ведь как применять то, чего не знаешь?

Статистические технологии применяют для анализа данных двух принципиально различных типов. Один из них - это результаты измерений (наблюдений, испытаний, анализов, опытов и др.) различных видов, например, результаты управленческого или бухгалтерского учета, данные Госкомстата и др. Короче, речь идет об объективной информации. Другой - это оценки экспертов, на основе своего опыта и интуиции делающих заключения относительно экономических явлений и процессов. Очевидно, это - субъективная информация. В стабильной экономической ситуации, позволяющей рассматривать длинные временные ряды тех или иных экономических величин, полученных в сопоставимых условиях, данные первого типа вполне адекватны. В быстро меняющихся условиях приходятся опираться на экспертные оценки. Такая новейшая часть прикладной статистики, как статистика нечисловых данных, была создана как ответ на запросы теории и практики экспертных оценок.

Для решения каких экономических задач может быть полезна прикладная статистика? Практически для всех, использующих конкретную информацию о реальном мире. Только чисто абстрактные, отвлеченные от реальности исследования могут обойтись без нее. В частности, прикладная статистика необходима для прогнозирования, в том числе поведения потребителей, а потому и для планирования. Выборочные исследования, в том числе выборочный контроль, основаны на прикладной статистике. Но планирование и контроль - основа контроллинга. Поэтому прикладная статистика - важная составляющая инструментария контроллера, воплощенного в компьютерной системе поддержки принятия решений. Прежде всего оптимальных решений, которые предполагают опору на адекватные модели прикладной статистики. В производственном менеджменте это может означать, например, использование моделей экстремального планирования эксперимента (судя по накопленному опыту их практического использования, такие модели позволяют повысить выход полезного продукта на 30-300%).

Высокие статистические технологии предполагают адаптацию применяемых методов к меняющейся ситуации. Например, параметры прогностического индекса меняются вслед за изменением характеристик используемых для прогнозирования величин. Таков метод экспоненциального сглаживания. В соответствующем алгоритме расчетов значения временного ряда используются с весами. Веса уменьшаются по мере удаления в прошлое. Многие методы дискриминантного анализа основаны на применении обучающих выборок. Например, для построения рейтинга надежности банков можно с помощью экспертов составить две обучающие выборки - надежных и ненадежных банков. А затем с их помощью решать для вновь рассматриваемого банка, каков он - надежный или ненадежный, а также оценивать его надежность численно, т.е. вычислять значение рейтинга.

Один из способов построения адаптивных статистических моделей - нейронные сети (см., например, монографию [39]). При  использовании нейронных сетей упор делается не на формулировку адаптивных алгоритмов анализа данных, а - в большинстве случаев - на построение виртуальной адаптивной структуры. Термин "виртуальная" означает, что "нейронная сеть" - это специализированная компьютерная программа, "нейроны" используются лишь при общении человека с компьютером. Методология нейронных сетей идет от идей кибернетики 1940-50-х годов. В компьютере создается модель мозга человека (весьма примитивная с точки зрения физиолога). Основа модели - весьма простые базовые элементы, называемые нейронами. Они соединены между собой, так что нейронные сети можно сравнить с хорошо знакомыми экономистам и инженерам блок-схемами. Каждый нейрон находится в одном из заданного множества состояний. Он получает импульсы от соседей по сети, изменяет свое состояние и сам рассылает импульсы. В результате состояние множества нейтронов изменяется, что соответствует проведению статистических вычислений.

Нейроны обычно объединяются в слои (как правило, два-три). Среди них выделяются входной и выходной слои. Перед началом решения той или иной задачи производится настройка. Во-первых, устанавливаются связи между нейронами, соответствующие решаемой задаче. Во-вторых, проводится обучение, т.е. через нейронную сеть пропускаются обучающие выборки, для элементов которых требуемые результаты расчетов известны. Затем параметры сети модифицируются так, чтобы получить максимальное соответствие выходных значений заданным величинам.

С точки зрения точности расчетов (и оптимальности в том или ином статистическом смысле) нейронные сети не имеют преимуществ перед другими адаптивными системами прикладной статистики. Однако они более просты для восприятия. Надо отметить, что в прикладной статистике используются и модели, промежуточные между нейронными сетями и "обычными" системами регрессионных уравнений (одновременных и с лагами). Они тоже используют блок-схемы, как, например, универсальный метод моделирования связей социально-экономических факторов ЖОК (этот метод описан в [7]).

Профессионалу в области контроллинга полезны многочисленные интеллектуальные инструменты анализа данных, относящиеся к высоким статистическим технологиям и эконометрике. В частности, заметное место в математико-компьютерном обеспечении принятия решений в контроллинге занимают методы теории нечеткости.



Похожие по содержанию материалы:
Маркетинг: Логистика: Организация управления службами в логистике ..
Орлов А.И. Эконометрика: Состоятельные критерии проверки однородности для независимых выборок ..
Организационный отношения в системе менеджмента - Основы менеджмента ..
Маркетинг: Логистика: Виды логистики: закупочная, производственная, распределительная ..
Стратегии бизнеса: Стратегия управления ..
Маркетинг: Логистика: Разработка систем складирования ..
Стратегии бизнеса: Стратегия реструктуризации: децентрализация управления и оптимальные размеры пред ..
Маркетинг: Логистика: Управление запасами ..
Нечисловая статистика: Статистика интервальных данных: Литература ..
Квалификационный справочник: Начальник гаража ..
Прикладная статистика: Интервальный дискриминантный анализ ..
Гольдштейн Г.Я. Основы менеджмента: Организационные отношения в системе менеджмента ..
Деловое общение:Сознательное/бессознательное и ложь в речевой коммуникации ..


Похожие документы из сходных разделов


Нечисловая статистика: Интервальные данные в задачах проверки гипотез

Глава 4. Статистика интервальных данных

4.3. Интервальные данные в задачах проверки гипотез

С позиций статистики интервальных данных целесообразно изучить все практически используемые процедуры прикладной математической статистики, установить соответствующие нотны и рациональные объемы выборок. Это позволит устранить разрыв между математическими схем .. читать далее


Менеджмент организации: Инновационный менеджмент: Отбор и оценка НИОКР

IV. ИННОВАЦИОННЫЙ МЕНЕДЖМЕНТ

3. Отбор и оценка НИОКР

Стратегическая значимость процедуры

Оценка проекта – важнейшая процедура на начальной стадии проекта, но она также представляет собой непрерывный процесс, предполагающий возможность остановки проекта в любой момент в связи с появляющейся дополнительной информацией. Таким образо .. читать далее


Орлов А.И. Математика случая: Вероятность и статистика – основные факты: Квантили

4. Случайные величины и их распределения

Квантили

При описании дифференциации доходов, при нахождении доверительных границ для параметров распределений случайных величин и во многих иных случаях применяется такое понятие, как «квантиль порядка р», где 0 < p < 1 (обозначается хр). Квантиль порядка р – значени .. читать далее