Орлов А.И. Эконометрика: О развитии эконометрических методовГлава 15. Современные эконометрические методы 15.1. О развитии эконометрических методов Современное состояние в эконометрике, как и в других областях, определяется прошлым. Кратко рассмотрим историю эконометрики и прикладной статистики, начав с их практической пользы. Что дает прикладная статистика народному хозяйству? Так называлась статья [1], в которой приводились многочисленные примеры успешного использования методов эконометрики и прикладной математической статистики при решении практических задач. Обширный перечень примеров приведен в предыдущих главах настоящей книги. Его можно продолжать практически безгранично. Так, в любом номере журнала "Заводская лаборатория" есть работы, в которых те или иные методы эконометрики и прикладной статистики применяются для решения прикладных технико-экономических задач. Поэтому бесспорно совершенно, что методы эконометрики и прикладной статистики успешно применяются в различных отраслях народного хозяйства, практически во всех областях науки. Согласно докладу [2], в 1988 г. затраты в СССР на статистический анализ данных оценивались в 2 миллиарда рублей ежегодно. Большая практическая значимость эконометрики и прикладной статистики, особенно в экономике, менеджменте, технических исследованиях и разработках, оправдывает целесообразность развития их методологии, в которых эти области научной и прикладной деятельности рассматривалась бы как целое, "с высоты птичьего полета". Чтобы иметь возможность обсуждения тенденций развития эконометрики и статистических методов в XXI веке, необходимо хотя бы кратко рассмотреть их историю. Об истории эконометрики и прикладной статистики. Типовые примеры раннего этапа применения статистических методов описаны в Ветхом Завете (см., например, Книгу Чисел). С математической точки зрения они сводились к подсчетам числа попаданий значений наблюдаемых признаков в определенные градации. В дальнейшем результаты стали представлять в виде таблиц и диаграмм, как это и сейчас делают Госкомстат РФ (Российское статистическое агентство). Надо признать, что по сравнению с Ветхим Заветом есть прогресс - в Библии не было таблиц. Однако нет продвижения по сравнению с работами российских статистиков конца девятнадцатого - начала двадцатого века (типовой монографией тех времен можно считать книгу [3], которая в настоящее время ещё легко доступна). Сразу после возникновения теории вероятностей (Паскаль, Ферма, 17 век) вероятностные модели стали использоваться при обработке статистических данных. Например, изучалась частота рождения мальчиков и девочек, было установлено отличие вероятности рождения мальчика от 0.5, анализировались причины того, что в парижских приютах эта вероятность не та, что в самом Париже, и т.д. Имеется достаточно много публикаций по истории теории вероятностей, однако в некоторых из них имеются неточные утверждения, что заставило одного из крупнейших ученых ХХ в. академика Украинской АН Б.В. Гнеденко включить в очередное издание своего курса [4] главу по истории математики случайного. В 1794 г. (по другим данным - в 1795 г.) К. Гаусс разработал метод наименьших квадратов, один из наиболее популярных ныне статистических методов (см. главу 5 выше), и применил его при расчете орбиты астероида Церера - для борьбы с ошибками астрономических наблюдений. В Х1Х веке заметный вклад в развитие практической статистики внес бельгиец А. Кетле, на основе анализа большого числа реальных данных показавший устойчивость относительных статистических показателей, таких, как доля самоубийств среди всех смертей. Интересно, что основные идеи статистического приемочного контроля и сертификации продукции обсуждались академиком М.В. Остроградским и применялись в российской армии ещё в середине Х1Х в.. Статистические методы управления качеством, сертификации и классификации продукции и сейчас весьма актуальны (см. главу 13 выше). Современный этап развития прикладной статистики можно отсчитывать с 1900 г., когда англичанин К. Пирсон основан журнал "Biometrika". Первая треть ХХ в. прошла под знаком параметрической статистики. Изучались методы, основанные на анализе данных из параметрических семейств распределений, описываемых кривыми из т.н. семейства Пирсона. Наиболее популярным было нормальное (гауссово) распределение. Для проверки гипотез использовались критерии Пирсона, Стьюдента, Фишера. Были предложены метод максимального правдоподобия, дисперсионный анализ, сформулированы основные идеи планирования эксперимента. Разработанную в первой трети ХХ в. теорию называем параметрической статистикой, поскольку ее основной объект изучения - это выборки из распределений, описываемых одним или небольшим числом параметров. Наиболее общим является семейство кривых Пирсона, задаваемых четырьмя параметрами. Как правило, нельзя указать каких-либо веских причин, по которым конкретное распределение результатов наблюдений должно входить в то или иное параметрическое семейство (подробнее см. начало главы 4). Исключения хорошо известны: если вероятностная модель предусматривает суммирование независимых случайных величин, то сумму естественно описывать нормальным распределением; если же в модели рассматривается произведение таких величин, то итог, видимо, приближается логарифмически нормальным распределением, и т.д. Однако в подавляющем большинстве реальных ситуаций подобных моделей нет, и приближение реального распределения с помощью кривых из семейства Пирсона или его подсемейств - чисто формальная операция. Именно из таких соображений критиковал параметрическую статистику академик АН СССР С.Н. Бернштейн в 1927 г. в своем докладе на Всероссийском съезде математиков [5]. Однако эта теория, к сожалению, до сих пор остается основой преподавания статистических методов и продолжает использоваться основной массой прикладников, остающихся далекими от новых веяний в статистике. Почему так происходит? Чтобы попытаться ответить на этот вопрос, обратимся к одной из статистических наук - наукометрии, в которой статистическими методами анализируется развитие научных исследований. Наукометрия прикладной статистики. Проведенный несколько лет назад анализ прикладной статистики как области научно-практической деятельности (в рамках движения за создание Всесоюзной статистической ассоциации, учрежденной в 1990 г.) показал, в частности, что актуальными для специалистов в настоящее время являются не менее чем 100 тысяч публикаций (подробнее см. статьи [6,7]). Реально же каждый из них знаком с существенно меньшим количеством книг и статей. Так, в наиболее солидном и обширном из научных изданий в области эконометрики и прикладной статистики - трехтомнике Кендалла и Стьюарта [8-10] всего около 2 тысяч литературных ссылок. При всей очевидности соображений о многократном дублировании ценных идей в различных публикациях приходится признать, что каждый специалист по эконометрике и прикладной статистике владеет лишь небольшой частью накопленных в этой области знаний. Не удивительно, что приходится постоянно сталкиваться с игнорированием или повторением ранее полученных результатов, с уходом в тупиковые (с точки зрения практики) направления исследований, с беспомощностью при обращении к реальным данным, и т.д. Все это - одно из проявлений адапционного механизма торможения развития науки, которая оказывается не в состоянии даже осмыслить ранее полученные результаты. Об этом печальном явлении еще более 30 лет назад писали В.В.Налимов и другие науковеды (см., например, [11]). Традиционный предрассудок состоит в том, что каждый новый результат, полученный исследователем - это кирпич, вложенный в непрерывно растущее здание науки, который непременно будет проанализирован и использован научным сообществом. Реальная ситуация - совсем иная. Как известно, большинство книг в центральных библиотеках никто никогда не читал. Так что с новым результатом, скорее всего, познакомятся лишь несколько человек, да и то поверхностно, а использовать его будут, в лучшем случае, сам автор в дальнейших работах и его ученики. Основа профессиональных знаний экономиста, менеджера, исследователя и инженера закладывается в период обучения. Затем они пополняются в том узком направлении, в котором работает специалист. Следующий этап - их тиражирование новому поколению. В результате вузовские учебники отстоят от современного развития на десятки лет. Так, учебники по математической статистике, по нашей экспертной оценке, в основном соответствуют 40-60-м годам ХХ в. А потому тем же годам соответствует по своему научному и методологическому уровню большинство вновь публикуемых исследований и тем более - прикладных работ. Одновременно приходится признать, что результаты, которым не повезло, поскольку они не вошли в учебники, независимо от их научной и (или) прикладной ценности почти все забываются. Активно продолжается развитие тупиковых направлений. Психологически это понятно. Приведу пример из своего опыта. В свое время по заказу Госстандарта я разработал методы оценки параметров гамма-распределения (см. государственный стандарт [12]. Поэтому мне близки и интересны работы по оцениванию параметров по выборкам из распределений, принадлежащих тем или иным параметрическим семействам, понятия функции максимального правдоподобия, эффективности оценок, использование неравенства Рао-Крамера и т.д. К сожалению, я знаю, что это - тупиковая ветвь, поскольку реальные данные не подчиняются каким-либо параметрическим семействам, надо применять иные статистические методы, о которых речь пойдет ниже. Понятно, что специалистам по параметрической статистике, потратившим многие годы на совершенствование в своей области, психологически трудно согласиться с подобным утверждением. В том числе и мне было трудно перейти на другую позицию, отраженную в настоящей книге и исходящую из потребностей прикладных работ. |