Главная страница --> Экономические научные работы (книги)

Акулов В.Б., Рудаков М.Н. Те .. | Квалификационный справочник: .. | Квалификационный справочник: .. | Дубровская Е. В. Некоторые а .. | Основные этапы интернационал .. |


Прикладная статистика: Состоятельные критерии проверки однородности независимых выборок

Часть 3. Методы прикладной статистики

3.1. Статистический анализ числовых величин

3.1.4. Состоятельные критерии проверки однородности независимых выборок

В соответствии с методологией прикладной статистики естественно потребовать, чтобы рекомендуемый для массового использования в технических, экономических, медицинских и иных исследованиях критерий однородности был состоятельным. Напомним: это значит, что для любых отличных друг от друга функций распределения F(x) и G(x) (другими словами, при справедливости альтернативной гипотезы H1) вероятность отклонения гипотезы H0 должна стремиться к 1 при увеличении объемов выборок т и п. Из перечисленных выше (в конце п. 3.1.2) критериев однородности состоятельными являются только критерии Смирнова и типа омега-квадрат.

Проведенное исследование мощности (методом статистических испытаний) первых четырех из перечисленных выше критериев (при различных вариантах функций распределения F(x) и G(x)) подтвердило преимущество критериев Смирнова и омега-квадрат и при объемах выборок 6-12. Рассмотрим эти критерии подробнее.

Критерий Смирнова однородности двух независимых выборок. Он предложен членом-корреспондентом АН СССР Н.В. Смирновым в 1939 г. (см. справочник [1]). Единственное ограничение - функции распределения F(x) и G(x) должны быть непрерывными. Напомним, что согласно Л.Н. Большеву и Н.В. Смирнову [1] значение эмпирической функции распределения в точке х равно доле результатов наблюдений в выборке, меньших х. Критерий Смирнова основан на использовании эмпирических функций распределения Fm(x) и Gn(x), построенных по первой и второй выборкам соответственно. Значение статистики Смирнова

сравнивают с соответствующим критическим значением (см., например, [1]) и по результатам сравнения принимают или отклоняют гипотезу Н0 о совпадении (однородности) функций распределения. Практически значение статистики Dm,п рекомендуется согласно монографии [1] вычислять по формулам

,

,

,

где x'1<x'2<…<x'm  - элементы первой выборки x1,x2,…,xm , переставленные в порядке возрастания, а y'1<y'2<…<y'n  - элементы второй выборки y1,y2,…,yn , также переставленные в порядке возрастания. Поскольку функции распределения F(x) и G(x) предполагаются непрерывными, то вероятность совпадения каких-либо выборочных значений равна 0.

Разработаны алгоритмы и программы для ЭВМ, позволяющие рассчитывать точные распределения, процентные точки и достигаемый уровень значимости для двухвыборочной статистики Смирнова , разработаны подробные таблицы (см., например, методику [9], содержащую описание алгоритмов, тексты программ и подробные таблицы).

         Однако у критерия Смирнова есть и недостатки. Его распределение сосредоточено в сравнительно небольшом числе точек, поэтому функция распределения растет большими скачками. В результате не удается выдержать заданный уровень значимости. Реальный уровень значимости может в несколько раз отличаться от номинального (подробному обсуждению неклассического феномена существенного отличия реального уровня значимости от номинального посвящена работа [10]).

Критерий типа омега-квадрат (Лемана-Розенблатта). Статистика критерия типа омега-квадрат для проверки однородности двух независимых выборок имеет вид:

A = Fm(x) – Gn(x))2 dHm+n(x) ,

где Hm+n(x) – эмпирическая функция распределения, построенная по объединенной выборке. Легко видеть, что

Hm+n(x) = Fm(x) +   Gn(x) .

Статистика A типа омега-квадрат была предложена Э. Леманом в 1951 г., изучена М. Розенблаттом в 1952 г., а затем и другими исследователями. Она зависит лишь от рангов элементов двух выборок в объединенной выборке. Пусть - первая выборка, - соответствующий вариационный ряд, -вторая выборка, - вариационный ряд, соответствующий второй выборке. Поскольку функции распределения независимых выборок непрерывны, то с вероятностью 1 все выборочные значения различны, совпадения отсутствуют. Статистика А представляется в виде (см., например, [1]):

где ri - ранг x'i и sj  - ранг y'j  в общем вариационном ряду, построенном по объединенной выборке.

Правила принятия решений при проверке однородности двух выборок на основе статистик Смирнова и типа омега-квадрат, т.е. таблицы критических значений в зависимости от уровней значимости и объемов значимости приведены, например, в таблицах [1].

Рекомендации по выбору критерия однородности. Для критерия типа омега-квадрат нет выраженного эффекта различия между номинальными и реальными уровнями значимости. Поэтому мы рекомендуем для проверки однородности функций распределения (гипотеза H0) применять статистику А типа омега-квадрат. Если методическое, табличное или программное обеспечение для статистики Лемана - Розенблатта отсутствует, рекомендуем использовать критерий Смирнова. Для проверки однородности математических ожиданий (гипотеза H'0) целесообразно применять критерий Крамера-Уэлча. По нашему мнению, статистики Стьюдента, Вилкоксона и др. допустимо использовать лишь в отдельных частных случаях, рассмотренных выше.

Некоторые соображения о внедрении современных методов прикладной статистики в практику технических, экономических, медицинских и иных исследований. Даже из проведенного выше разбора лишь одной из типичных статистических задач - задачи проверки однородности двух независимых выборок - можно сделать вывод о целесообразности широкого развертывания работ по критическому анализу сложившейся практики статистической обработки данных и по внедрению накопленного арсенала современных методов прикладной статистики. По нашему мнению, широкого внедрения заслуживают, в частности, методы многомерного статистического анализа, планирования эксперимента, статистики объектов нечисловой природы. Очевидно, рассматриваемые работы должны быть плановыми, организационно оформленными, проводиться мощными самостоятельными организациями и подразделениями. Целесообразно создание службы статистических консультаций в системе научно-исследовательских учреждений и вузов технического, экономического, медицинского профиля.



Похожие по содержанию материалы:
Акулов В.Б. Финансовый менеджмент: 1. Общие понятия ..
Квалификационный справочник: Техник-технолог ..
Квалификационный справочник: Товаровед ..
Квалификационный справочник: Директор котельной ..
Акулов В.Б., Рудаков М.Н. Теория организации: Многообразие организационно-правового закрепления отно ..
Квалификационный справочник: Экономист ..
Квалификационный справочник: Экономист вычислительного (информационно-вычислительного) центра ..
Дубровская Е. В. Некоторые аспекты управление стоимостью предприятия ..
Основные этапы интернационализации бизнеса - Основы менеджмента ..
Квалификационный справочник: Экономист по планированию ..
Управление интернализацией бизнеса - Основы менеджмента ..
Галасюк В., Вишневская-Галасюк А., Галасюк В. Основные методы оценки активов, предусмотренные между ..
Орлов А.И. Эконометрика: Подходы к управлению рисками ..


Похожие документы из сходных разделов


Прикладная статистика: Методы проверки однородности для связанных выборок

Часть 3. Методы прикладной статистики

3.1. Статистический анализ числовых величин

3.1.5. Методы проверки однородности для связанных выборок

         Начнем с практического примера. Приведем письмо главного инженера подмосковного химического комбината (некоторые названия изменены).

"Директору Института высоких ст .. читать далее


Прикладная статистика: Проверка гипотезы симметрии

Часть 3. Методы прикладной статистики

3.1. Статистический анализ числовых величин

3.1.6. Проверка гипотезы симметрии

         Рассмотрим методы проверки гипотезы симметрию функции распределения относительно 0. Сначала обсудим, какого типа отклонения от гипотезы симметрии можно ожидать при альтернативных гипотезах?

..
читать далее
Прикладная статистика: Статистический анализ числовых величин: Контрольные вопросы

Часть 3. Методы прикладной статистики

3.1. Статистический анализ числовых величин

Контрольные вопросы и задачи

1. Почему непараметрические методы анализа числовых данных предпочтительнее параметрических?

2. Указать доверительные границы для математических ожиданий (с доверительной вероятностью 0,95) и проверить гипо .. читать далее