Главная страница --> Экономические научные работы (книги)

Нечисловая статистика: Метод .. | Нечисловая статистика: Метод .. | Нечисловая статистика:Статис .. | Галасюк В., Сорока М.. Галас .. | Евдокиенко В. Бизнес-процесс .. |


Теория принятия решений: Интервальный дискриминантный анализ

2.3.8. Интервальный дискриминантный анализ

 Перейдем к задачам классификации в статистике интервальных данных. Как известно [27], важная их часть – задачи дискриминации (диагностики, распознавания образов с учителем). В этих задачах заданы классы (полностью или частично, с помощью обучающих выборок), и необходимо принять решение –к какому этих классов отнести вновь поступающий объект.

 В линейном дискриминантном анализе правило принятия решений основано на линейной функции f(x) от распознаваемого вектора  Рассмотрим для простоты случай двух классов. Правило принятия решений определяется константой С – при f(x)>C распознаваемый объект относится к первому классу, при f(x)<C – ко второму.

 В первоначальной вероятностной модели Р.Фишера предполагается, что классы заданы обучающими выборками объемов N1 и N2 соответственно из многомерных нормальных распределений с разными математическими ожиданиями, но одинаковыми ковариационными матрицами. В соответствии с леммой Неймана-Пирсона, дающей правило принятия решений при поверке статистических гипотез, дискриминантная функция является линейной. Для ее практического использования теоретические характеристики распределения необходимо заменить на выборочные. Тогда дискриминантная функция приобретает следующий вид

Здесь  - выборочное среднее арифметическое по первой выборке  а  - выборочное среднее арифметическое по второй выборке  В роли S может выступать любая состоятельная оценка общей для выборок ковариационной матрицы. Обычно используют следующую оценку, естественным образом сконструированную на основе выборочных ковариационных матриц:

 В соответствии с подходом статистики интервальных данных считаем, что специалисту по анализу данных известны лишь значения с погрешностями

Таким образом, вместо f(x) статистик делает выводы на основе искаженной линейной дискриминантной функции f1(x), в которой коэффициенты рассчитаны не по исходным данным , а по искаженным погрешностями значениям .

 Это – модель с искаженными параметрами дискриминантной функции. Следующая модель – такая, в которой распознаваемый вектор x также известен с ошибкой. Далее, константа С может появляться в модели различными способами. Она может задаваться априори абсолютно точно. Может задаваться с какой-то ошибкой, не связанной с ошибками, вызванными конечностью обучающих выборок. Может рассчитываться по обучающим выборкам, например, с целью уравнять ошибки классификации, т.е. провести плоскость дискриминации через середину отрезка, соединяющего центры классов. Итак – целый спектр моделей ошибок.

 На какие статистические процедуры влияют ошибки в исходных данных? Здесь тоже много постановок. Можно изучать влияние погрешностей измерений на значения дискриминантной функции f, например, в той точке, куда попадает вновь поступающий объект х. Очевидно, случайная величина f(x) имеет некоторое распределение, определяемое распределениями обучающих выборок. Выше описана модель Р.Фишера с нормально распределенными совокупностями. Однако реальные данные, как правило, не подчиняются нормальному распределению [27]. Тем не менее линейный статистический анализ имеет смысл и для распределений, не являющихся нормальными (при этом вместо свойств многомерного нормального распределения приходится опираться на многомерную центральную предельную теорему и теорему о наследовании сходимости [3]). В частности, приравняв метрологическую ошибку, вызванную погрешностями исходных данных, и статистическую ошибку, получим условие, определяющее рациональность объемов выборок. Здесь два объема выборок, а не один, как в большинстве рассмотренных постановок статистики интервальных данных. С подобным мы сталкивались ранее при рассмотрении двухвыборочного критерия Смирнова.

 Естественно изучать влияние погрешностей исходных данных не при конкретном х, а для правила принятия решений в целом. Может представлять интерес изучение характеристик этого правила по всем х или по какому-либо отрезку. Более интересно рассмотреть показатель качества классификации, связанный с пересчетом на модель линейного дискриминантного анализа [27].

 Математический аппарат изучения перечисленных моделей развит выше в предыдущих пунктах настоящей главы. Некоторые результаты приведены в [14]. Из-за большого объема выкладок ограничимся приведенными здесь замечаниями.



Похожие по содержанию материалы:
Юркова Т.И., Юрков С.В. Экономика предприятия: Показатели движения и использования основных средств ..
Нечисловая статистика: Статистики интегрального типа ..
Нечисловая статистика: Методы восстановления зависимостей ..
Квалификационный справочник: Техник по защите информации ..
Нечисловая статистика: Методы классификации ..
Нечисловая статистика: Методы шкалирования ..
Нечисловая статистика:Статистические методы в пространствах произвольной природы: Литература ..
Галасюк В., Сорока М.. Галасюк В. Почему в XXI веке кредитные рейтинги, присваиваемые рейтинговыми а ..
Евдокиенко В. Бизнес-процессы, процессное управление и эффективность ..
Квалификационный справочник: Директор (начальник) учреждения (организации) ..
Макарова Е.Г. Мифы на рынке инвестиций ..
Акулов В.Б., Акулова О.В. Экономическая теория: 17. Капитал и сельское хозяйство ..
Квалификационный справочник: Заведующий (начальник) научно-исследовательским отделом (отделением, ла ..


Похожие документы из сходных разделов


Теория принятия решений: Интервальный кластер-анализ

2.3.9. Интервальный кластер-анализ

 Кластер-анализ, как известно [27], имеет целью разбиение совокупности объектов на группы сходных между собой. Многие методы кластер-анализа основаны на использовании расстояний между объектами. (Степень близости между объектами может измеряться также с помощью мер близости и показателей различия, для которых неравенство треугольника выполнено не .. читать далее


Прикладная статистика: Проверка гипотез: Литература

Часть 2. Основные проблемы прикладной статистики

2.3. Проверка гипотез

Литература

1. Крамер Г. Математические методы статистики  / Пер. с англ. / 2-е изд. - М.: Мир, 1975. – 648 с.

2. Орлов А.И. Метод моментов проверки согласия с параметрическим семейством распределений. – Журнал «Заводская лаборатория». 1989. Т.55. .. читать далее


Стратегии бизнеса: Трансформации бизнеса

ГЛАВА 2. СОЗДАНИЕ, РЕОРГАНИЗАЦИЯ И ЛИКВИДАЦИЯ БИЗНЕСА

2.3. Трансформации бизнеса

Как указывалось в п.2.1, выделяются следующие основные виды трансформаций бизнеса: слияние, присоединение, разделение, выделение, преобразование и объединение предприятий. Поскольку под этими терминами могут скрываться разные понятия, определим их с юридической стороны.

читать далее