Теория принятия решений: О развитии статистики интервальных данных2.3.1. О развитии статистики интервальных данных Перспективная и быстро развивающаяся область статистических исследований последних лет - математическая статистика интервальных данных. Речь идет о развитии методов прикладной математической статистики в ситуации, когда статистические данные - не числа, а интервалы, в частности, порожденные наложением ошибок измерения на значения случайных величин. Полученные результаты отражены, в частности, в выступлениях на проведенной в "Заводской лаборатории" дискуссии [1] и в докладах международной конференции ИНТЕРВАЛ-92 [2]. Приведем основные идеи весьма перспективного для вероятностно-статистических методов и моделей принятия решений асимптотического направления в статистике интервальных данных. В настоящее время признается необходимым изучение устойчивости (робастности) оценок параметров к малым отклонениям исходных данных и предпосылок модели. Однако популярная среди теоретиков модель засорения (Тьюки-Хьюбера) представляется не вполне адекватной. Эта модель нацелена на изучение влияния больших "выбросов". Поскольку любые реальные измерения лежат в некотором фиксированном диапазоне, а именно, заданном в техническом паспорте средства измерения, то зачастую выбросы не могут быть слишком большими. Поэтому представляются полезными иные, более общие схемы устойчивости, в частности, введенные в [3], в которых, например, учитываются отклонения распределений результатов наблюдений от предположений модели. В одной из таких схем изучается влияние интервальности исходных данных на статистические выводы. Необходимость такого изучения стала очевидной следующим образом. В государственных стандартах СССР по прикладной статистике в обязательном порядке давалось справочное приложение "Примеры применения правил стандарта". При разработке ГОСТ 11.011-83 [4] были переданы для анализа реальные данные о наработке резцов до предельного состояния (в часах). Оказалось, что все эти данные представляли собой либо целые числа, либо полуцелые (т.е. после умножения на 2 становящиеся целыми). Ясно, что исходная длительность наработок искажена. Необходимо учесть в статистических процедурах наличие такого искажения исходных данных. Как это сделать? Первое, что приходит в голову - модель группировки данных, согласно которой для истинного значения Х проводится замена на ближайшее число из множества {0,5n, n=1,2,3,...}. Однако эту модель целесообразно подвергнуть сомнению, а также рассмотреть иные модели. Так, возможно, что Х надо приводить к ближайшему сверху элементу указанного множества - если проверка качества поставленных на испытание резцов проводилась раз в полчаса. Другой вариант: если расстояния от Х до двух ближайших элементов множества {0,5n, n=1,2,3,...} примерно равны, то естественно ввести рандомизацию при выборе заменяющего числа, и т.д. Целесообразно построить новую математико-статистическую модель, согласно которой результаты наблюдений - не числа, а интервалы. Например, если в таблице приведено значение 53,5, то это значит, что реальное значение - какое-то число от 53,0 до 54,0, т.е. какое-то число в интервале [53,5 - 0,5; 53,5 + 0,5], где 0,5 - максимально возможная погрешность. Принимая эту модель, мы попадаем в новую научную область - статистику интервальных данных [5,6]. Статистика интервальных данных идейно связана с интервальной математикой, в которой в роли чисел выступают интервалы (см., например, монографию [7]). Это направление математики является дальнейшим развитием всем известных правил приближенных вычислений, посвященных выражению погрешностей суммы, разности, произведения, частного через погрешности тех чисел, над которыми осуществляются перечисленные операции. В интервальной математике сумма двух интервальных чисел [a,b] и [c,d] имеет вид [a,b] + [c,d] = [a+c, b+d], а разность определяется по формуле [a,b] - [c,d] = [a-d, b-c]. Для положительных a, b, c, d произведение определяется формулой [a,b] * [c,d] = [ac, bd], а частное имеет вид [a,b] / [c,d] = [a/d, b/c]. Эти формулы получены при решении соответствующих оптимизационных задач. Пусть х лежит в отрезке [a,b], а у – в отрезке [c,d]. Каково минимальное и максимальное значение для х+у? Очевидно, a+c и b+d соответственно. Минимальные и максимальные значения для х-у, ху, х/у задают нижние и верхние границы для интервальных чисел, задающих результаты арифметических операций. А от арифметических операций можно перейти ко всем остальным математическим алгоритмам. Так строится интервальная математика. Как видно из сборника трудов Международной конференции [2], к настоящему времени удалось решить, в частности, ряд задач теории интервальных дифференциальных уравнений, в которых коэффициенты, начальные условия и решения описываются с помощью интервалов. По мнению ряда специалистов, статистика интервальных данных является частью интервальной математики [7]. Впрочем, есть точка зрения, согласно которой такое включение нецелесообразно, поскольку статистика интервальных данных использует несколько иные подходы к алгоритмам анализа реальных данных, чем сложившиеся в интервальной математике (подробнее см. ниже). В настоящей главе развиваем асимптотические методы статистического анализа интервальных данных при больших объемах выборок и малых погрешностях измерений. В отличие от классической математической статистики, сначала устремляется к бесконечности объем выборки и только потом - уменьшаются до нуля погрешности. В частности, еще в начале 1980-х годов с помощью такой асимптотики были сформулированы правила выбора метода оценивания в ГОСТ 11.011-83 [4]. Разработана [8] общая схема исследования, включающая расчет нотны (максимально возможного отклонения статистики, вызванного интервальностью исходных данных) и рационального объема выборки (превышение которого не дает существенного повышения точности оценивания). Она применена к оцениванию математического ожидания и дисперсии [1], медианы и коэффициента вариации [9], параметров гамма-распределения [4, 10] и характеристик аддитивных статистик [8], при проверке гипотез о параметрах нормального распределения, в т.ч. с помощью критерия Стьюдента, а также гипотезы однородности с помощью критерия Смирнова [9]. Изучено асимптотическое поведение оценок метода моментов и оценок максимального правдоподобия (а также более общих - оценок минимального контраста), проведено асимптотическое сравнение этих методов в случае интервальных данных, найдены общие условия, при которых, в отличие от классической математической статистики, метод моментов дает более точные оценки, чем метод максимального правдоподобия [11]. Разработаны подходы к рассмотрению интервальных данных в основных постановках регрессионного, дискриминантного и кластерного анализов [12]. В частности, изучено влияние погрешностей измерений и наблюдений на свойства алгоритмов регрессионного анализа, разработаны способы расчета нотн и рациональных объемов выборок, введены и исследованы новые понятия многомерных и асимптотических нотн, доказаны соответствующие предельные теоремы [12,13]. Начата разработка интервального дискриминантного анализа, в частности, рассмотрено влияние интервальности данных на показатель качества классификации [12,14]. Основные идеи и результаты рассматриваемого направления в статистике интервальных данных приведены в публикациях обзорного характера [5,6]. Как показала, в частности, международная конференция ИНТЕРВАЛ-92, в области асимптотической математической статистики интервальных данных мы имеем мировой приоритет. По нашему мнению, со временем во все виды статистического программного обеспечения должны быть включены алгоритмы интервальной статистики, "параллельные" обычно используемым алгоритмам прикладной математической статистики. Это позволит в явном виде учесть наличие погрешностей у результатов наблюдений, сблизить позиции метрологов и статистиков. Многие из утверждений статистики интервальных данных весьма отличаются от аналогов из классической математической статистики. В частности, не существует состоятельных оценок; средний квадрат ошибки оценки, как правило, асимптотически равен сумме дисперсии оценки, рассчитанной согласно классической теории, и некоторого положительного числа (равного квадрату т.н. нотны - максимально возможного отклонения значения статистики из-за погрешностей исходных данных) - в результате метод моментов оказывается иногда точнее метода максимального правдоподобия [11]; нецелесообразно увеличивать объем выборки сверх некоторого предела (называемого рациональным объемом выборки) - вопреки классической теории, согласно которой чем больше объем выборки, тем точнее выводы. В стандарт [4] был включен раздел 5, посвященный выбору метода оценивания при неизвестных параметрах формы и масштаба и известном параметре сдвига и основанный на концепциях статистики интервальных данных. Теоретическое обоснование этого раздела стандарта опубликовано лишь через 5 лет в статье [10]. Следует отметить, что хотя в 1982 г. при разработке стандарта [4] были сформулированы основные идеи статистики интервальных данных, однако из-за недостатка времени они не были полностью реализованы в ГОСТ 11.011-83, и этот стандарт написан в основном в классической манере. Развитие идей статистики интервальных данных продолжается уже в течение 20 лет, и еще много чего надо сделать! Большое значение статистики интервальных данных для современной прикладной статистики обосновано в [15,16]. Ведущая научная школа в области статистики интервальных данных - это школа проф. А.П. Вощинина, активно работающая с конца 70-х годов. Полученные результаты отражены в ряде монографий (см., в частности, [17,18,19]), статей [1, 20, 21], докладов, в частности, в трудах [2] Международной конференции ИНТЕРВАЛ-92, диссертаций [22,23]. В частности, изучены проблемы регрессионного анализа, планирования эксперимента, сравнения альтернатив и принятия решений в условиях интервальной неопределенности. Рассматриваемое ниже направление отличается нацеленностью на асимптотические результаты, полученные при больших объемах выборок и малых погрешностях измерений, поэтому оно и названо асимптотической статистикой интервальных данных. Сформулируем сначала основные идеи асимптотической математической статистики интервальных данных, а затем рассмотрим реализацию этих идей на перечисленных выше примерах. Следует сразу подчеркнуть, что основные идеи достаточно просты, в то время как их проработка в конкретных ситуациях зачастую оказывается достаточно трудоемкой. |