Главная страница --> Экономические научные работы (книги)

Асаул А.Н., Карасев А.В. Эко .. | Теория принятия решений: Опи .. | Ермишин П.Г. Основы экономич .. | Организация, нормирование и .. | Юркова Т.И., Юрков С.В. Экон .. |


Орлов А.И. Математика случая: Вероятность и статистика – основные факты: Неравенства Чебышёва

2. Основы теории вероятностей

Неравенства Чебышёва

Во введении к разделу обсуждалась задача проверки того, что доля дефектной продукции в партии равна определенному числу. Для демонстрации вероятностно-статистического подхода к проверке подобных утверждений являются полезными неравенства, впервые примененные в теории вероятностей великим русским математиком Пафнутием Львовичем Чебышёвым (1821-1894) и потому носящие его имя. Эти неравенства широко используются в теории математической статистики, а также непосредственно применяются в ряде практических задач принятия решении. Например, в задачах статистического анализа технологических процессов и качества продукции в случаях, когда явный вид функции распределения результатов наблюдений не известен. Они применяются также в задаче исключения резко отклоняющихся результатов наблюдений.

Первое неравенство Чебышева. Пусть Х – неотрицательная случайная величина (т.е.  для любого ). Тогда для любого положительного числа а справедливо неравенство

Доказательство. Все слагаемые в правой части формулы (4), определяющей математическое ожидание, в рассматриваемом случае неотрицательны. Поэтому при отбрасывании некоторых слагаемых сумма не увеличивается. Оставим в сумме только те члены, для которых . Получим, что

.   (9)

Для всех слагаемых в правой части (9) , поэтому

.   (10)

Из (9) и (10) следует требуемое.

Второе неравенство Чебышева. Пусть Х – случайная величина. Для любого положительного числа а справедливо неравенство

.

Это неравенство содержалось в работе П.Л.Чебышёва «О средних величинах», доложенной Российской академии наук 17 декабря 1866 г. и опубликованной в следующем году.

Для доказательства второго неравенства Чебышёва рассмотрим случайную величину У = (Х – М(Х))2. Она неотрицательна, и потому для любого положительного числа b, как следует из первого неравенства Чебышёва, справедливо неравенство

.

Положим b = a2. Событие {Y>b} совпадает с событием {XM(X)>a}, а потому

,

что и требовалось доказать.

Пример 11. Можно указать неотрицательную случайную величину Х и положительное число а такие, что первое неравенство Чебышёва обращается в равенство.

Достаточно рассмотреть . Тогда М(Х) = а, М(Х)/а = 1 и Р(а>a) = 1, т.е. P(X>a) = M(X)a = 1.

Следовательно, первое неравенство Чебышёва в его общей формулировке не может быть усилено. Однако для подавляющего большинства случайных величин, используемых при вероятностно-статистическом моделировании реальных явлений и процессов, левые части неравенств Чебышёва много меньше соответствующих правых частей.

Пример 12. Может ли первое неравенство Чебышёва обращаться в равенство при всех а? Оказывается, нет. Покажем, что для любой неотрицательной случайной величины с ненулевым математическим ожиданием можно найти такое положительное число а, что первое неравенство Чебышёва является строгим.

Действительно, математическое ожидание неотрицательной случайной величины либо положительно, либо равно 0. В первом случае возьмем положительное а, меньшее положительного числа М(Х), например, положим а = М(Х)/2. Тогда М(Х)/а больше 1, в то время как вероятность события не может превышать 1, а потому первое неравенство Чебышева является для этого а строгим. Второй случай исключается условиями примера 11.

Отметим, что во втором случае равенство 0 математического ожидания влечет тождественное равенство 0 случайной величины. Для такой случайной величины левая и правая части первого неравенства Чебышёва равны 0 при любом положительном а.

Можно ли в формулировке первого неравенства Чебышева отбросить требование неотрицательности случайной величины Х? А требование положительности а? Легко видеть, что ни одно из двух требований не может быть отброшено, поскольку иначе правая часть первого неравенства Чебышева может стать отрицательной.



Похожие по содержанию материалы:
Анализ структуры управления фирмы - Основы менеджмента ..
Юркова Т.И., Юрков С.В. Экономика предприятия: Износ основных средств ..
Акулов В.Б., Акулова О.В. Экономическая теория: 14. Торговый капитал и торговая прибыль ..
Татарова А.В. Оценка недвижимости и управление собственностью: Виды оценки недвижимости ..
Асаул А.Н., Карасев А.В. Экономика недвижимости: Правовые основы, регулирующие отношения на рынке не ..
Теория принятия решений: Описание неопределенностей с помощью теории нечеткости ..
Ермишин П.Г. Основы экономической теории: Национальная экономика и механизм ее развития ..
Организация, нормирование и оплата труда на предприятиях отрасли:Нормы труда в управлении производст ..
Юркова Т.И., Юрков С.В. Экономика предприятия: Амортизация основных средств ..
Менеджмент организации: Основы менеджмента: Развитие управления в России ..
Акулов В.Б., Акулова О.В. Экономическая теория: 1. Введение ..
Модель нормативной структуры системы и ее использование при анализе и синтезе системы управления - О ..
Юркова Т.И., Юрков С.В. Экономика предприятия: Способы начисления амортизации основных средств ..


Похожие документы из сходных разделов


Маркетинг: Менеджмент: Управление конфликтами, стрессами и изменениями

II. МЕНЕДЖМЕНТ

14. Управление конфликтами, стрессами и изменениями

Работающие в организациях люди различны между собой. Соответственно, они по-разному воспринимают ситуацию, в которой они оказываются. Различие в восприятии часто приводит к тому, что люди не соглашаются друг с другом. Это несогласие возникает тогда, когда ситуация действительно носит конфликтный ха .. читать далее


Яркина Т.В. Основы экономики предприятия: Персонал предприятия

2. Ресурсы предприятия

2.1. Персонал предприятия

2.1.1. Классификация и структура персонала предприятия

Различают понятия "трудовые ресурсы" и "персонал" предприятия.