Нечисловая статистика: Нечисловые статистические данные: ЛитератураГлава 1. Нечисловые статистические данные Литература 1. Суппес П., Зинес Дж. Основы теории измерений. - В сб.: Психологические измерения. - М.: Мир, 1967. - С. 9-110. 2. Орлов А.И. Устойчивость в социально-экономических моделях. - М.: Наука, 1979. - 296 с. 3. Орлов А.И. Эконометрика. Учебник для вузов. Изд. 2-е, исправленное и дополненное. - М.: Изд-во "Экзамен", 2003. – 576 с. 4. Носовский Г.В., Фоменко А.Т. Империя. Русь, Турция, Китай, Европа, Египет. Новая математическая хронология древности. - М.: Изд-во "Факториал", 1996. - 752 с. 5. Шубкин В.П. Социологические опыты. - М.: Мысль,1970. - 256 с. 6. Щукина Г.И. Проблема познавательного интереса в педагогике. - М.: Педагогика, 1971.-352 с. 7. Орлов А.И. Статистика объектов нечисловой природы (Обзор). – Журнал «Заводская лаборатория». 1990. Т.56. No.3. С.76-83. 8. Орлов А.И. Объекты нечисловой природы. – Журнал «Заводская лаборатория». 1995. Т.61. No.3. С.43-52. 9. Кендэл М. Ранговые корреляции. - М.: Статистика, 1975. - 216 с. 10. Беляев Ю.К. Вероятностные методы выборочного контроля. - М.: Наука, 1975. - 408 с. 11. Лумельский Я.П. Статистические оценки результатов контроля качества. - М.: Изд-во стандартов, 1979. - 200 с. 12. Дэвид Г. Метод парных сравнений. - М.: Статистика, 1978.- 144 с. 13. Организация и планирование машиностроительного производства (производственный менеджмент): Учебник / К.А. Грачева, М.К. Захарова, Л.А. Одинцова и др. Под ред. Ю.В. Скворцова, Л.А. Некрасова. – М.: Высшая школа, 2003. – 470 с. 14. Кендалл М.Дж., Стъюарт А., Статистические выводы и связи. М.: Наука, 1973. - 900 с. 15. Себер Дж. Линейный регрессионный анализ. - М.: Мир, 1980. - 456 с. 16. Орлов А.И. Асимптотика некоторых оценок размерности модели в регрессии. – В сб.: Прикладная статистика. Ученые записки по статистике, т.45. - М.: Наука, 1983. С.260-265. 17. Борель Э. Вероятность и достоверность. - М.: ГИФМЛ, 1961. - 120 с. 18. Орлов А.И. Вероятностные модели конкретных видов объектов нечисловой природы. – Журнал «Заводская лаборатория». 1995. Т.61. No.5. С.43-51. 19. Вероятность и математическая статистика: Энциклопедия / Гл. ред. Ю.В. Прохоров. - М.: Большая Российская энциклопедия, 1999. - 910 с. 20. Орлов А.И. Логистическое распределение. – В сб.: Математическая энциклопедия. Т.3. - М.: Советская энциклопедия, 1982. - С.414. 21. Тюрин Ю.Н., Василевич А.П., Андрукович П.Ф. Статистические модели ранжирования. - В сб.: Статистические методы анализа экспертных оценок. - М.: Наука, 1977. - С.30-58. 22. Орлов А.И. Случайные множества с независимыми элементами (люсианы) и их применения. – В сб.: Алгоритмическое и программное обеспечение прикладного статистического анализа. Ученые записки по статистике, т.36. - М.: Наука, 1980. - С. 287-308. 23. Орлов А.И. Парные сравнения в асимптотике Колмогорова. – В сб.: Экспертные оценки в задачах управления. - М.: Изд-во Института проблем управления АН СССР, 1982. - С. 58-66. 24. Орлов А.И. Задачи оптимизации и нечеткие переменные. - М.: Знание, 1980. – 64 с. 25. Прохоров Ю.В., Розанов Ю.А. Теория вероятностей. (Основные понятия. Предельные теоремы. Случайные процессы.) - М.: Наука, 1973.- 496 с. 26. Битюков П.В. Моделирование задач ценообразования на электронные обучающие курсы в области дистанционного обучения / Автореферат диссертации на соискание ученой степени кандидата экономических наук. – М.: Московский государственный университет экономики, статистики и информатики, 2002. – 24 с. 27. Лебег А. Об измерении величин. - М.: Учпедгиз, 1960. - 204 с. 28. Ефимов Н.В. Высшая геометрия. - М.: ГИФМЛ, 1961. - 580 с. 29. Орлов А.И. Основания теории нечетких множеств (обобщение аппарата Заде). Случайные толерантности. – В сб.: Алгоритмы многомерного статистического анализа и их применения. - М.: Изд-во ЦЭМИ АН СССР, 1975. - С.169-175. 30. Goodman I.R. Fuzzy sets as equivalence classes of random sets // Fuzzy Set and Possibility Theory: Recent Developments. - New York-Oxford-Toronto-Sydney-Paris-Frankfurt, Pergamon Press, 1982. - P.327-343. (Перевод на русский язык: Гудмэн И. Нечеткие множества как классы эквивалентности случайных множеств. - В сб.: Нечеткие множества и теория возможностей. Последние достижения. - М.: Радио и связь, 1986. - С. 241-264.) 31. Орлов А.И. Математика нечеткости. – Журнал «Наука и жизнь». 1982. No.7. С.60-67. 32. Орлов А.И. Математика случая. Вероятность и статистика - основные факты. - М.: МЗ-Пресс, 2004. 33. Орлов А.И. Асимптотика решений экстремальных статистических задач. – В сб.: Анализ нечисловых данных в системных исследованиях. Сборник трудов. Вып.10. - М.: Всесоюзный научно-исследовательский институт системных исследований, 1982. С. 4-12. 34. Кемени Дж., Снелл Дж. Кибернетическое моделирование. Некоторые приложения. – М.: Советское радио, 1972. – 192 с. 35. Раушенбах Г.В. Меры близости и сходства // Анализ нечисловой информации в социологических исследованиях. – М.; Наука, 1986. – С.169-203. 36. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. – М.: Наука, 1972. – 496 с. 37. Окстоби Дж. Мера и категория. – М.: Мир, 1974. – 158 с. 38. Льюс Р., Галантер Е. Психофизические шкалы // Психологические измерения. – М.: Мир, 1967. – С.111-195. 39. Орлов А.И. Связь между нечеткими и случайными множествами: Нечеткие толерантности // Исследования по вероятностно-статистическому моделированию реальных систем. – М.: ЦЭМИ АН СССР, 1977. – С.140-148. 40. Орлов А.И., Раушенбах Г.В. Метрика подобия: аксиоматическое введение, асимптотическая нормальность // Статистические методы оценивания и проверки гипотез. Межвузовский сборник научных трудов. - Пермь: Изд-во Пермского государственного университета, 1986, с.148-157. |